5.3 It's All In Your Head ## A Solidify Understanding Task In the previous task you were asked to justify some claims by writing paragraphs explaining how various figures were constructed and how those constructions convinced you that the claims were true. Perhaps you found it difficult to say everything you felt you just knew. Sometimes we all find it difficult to explain our ideas and to get those ideas out of our heads and written down or paper. Organizing ideas and breaking complex relationships down into smaller chunks can make the task of proving a claim more manageable. One way to do this is to use a flow diagram. #### First, some definitions: • In a triangle, an **altitude** is a line segment drawn from a vertex perpendicular to the opposite side (or an extension of the opposite side). • In a triangle, a **median** is a line segment drawn from a vertex to the midpoint of the opposite side. • In a triangle, an **angle bisector** is a line segment or ray drawn from a vertex that cuts the angle in half. • In a triangle, a **perpendicular bisector of a side** is a line drawn perpendicular to a side of the triangle through its midpoint. Travis used a compass and straightedge to construct an equilateral triangle. He then folded his diagram across the two points of intersection of the circles to construct a line of reflection. Travis, Tehani, Carlos and Clarita are trying to decide what to name the line segment from C to D. Travis thinks the line segment they have constructed is also a median of the equilateral triangle. Tehani thinks it is an angle bisector. Clarita thinks it is an altitude and Carlos thinks it is a perpendicular bisector of the opposite side. The four friends are trying to convince each other that they are right. On the following page you will find a flow diagram of statements that can be written to describe relationships in the diagram, or conclusions that can be made by connecting multiple ideas. You will use the flow diagram to identify the statements each of the students—Travis, Tehani, Carlos and Clarita—might use to make their case. To get ready to use the flow diagram, answer the following questions about what each student needs to know about the line of reflection to support their claim. - 1. To support his claim that the line of reflection is a median of the equilateral triangle, Travis will need to show that: - 2. To support her claim that the line of reflection is an angle bisector of the equilateral triangle, Tehani will need to show that: - 3. To support her claim that the line of reflection is an altitude of the equilateral triangle, Clarita will need to show that: - 4. To support his claim that the line of reflection is a perpendicular bisector of a side of the equilateral triangle, Carlos will need to show that: bisecting perpendicular Here is a flow diagram of statements that can be written to describe relationships in the diagram, or conclusions that can be made by connecting multiple ideas. Use four different colors to identify the statements each of the students—<u>Travis</u>, <u>Tehani</u>, <u>Clarita</u> and <u>Carlos</u> might use to make their case. - 8. Match each of the arrows and braces in the flow diagram with one of the following reasons that justifies why you can make the connection between the statement (or statements) previously accepted as true and the conclusion that follows: - 1. Definition of reflection - 2. Definition of translation - 3. Definition of rotation - . Definition of an equilateral triangle - 5. Definition of perpendicular - 6. Definition of midpoint - 7. Definition of altitude - 8. Definition of median - 9. Definition of angle bisector - 10. Definition of perpendicular bisector - 11. Equilateral triangles can be folded onto themselves about a line of reflection - 12. Equilateral triangles can be rotated 60° onto themselves - 13. SSS triangle congruence criteria - 14. SAS triangle congruence criteria - 15. ASA triangle congruence criteria - 16. Corresponding parts of congruent triangles are congruent - 17. Reflexive Property Travis and his friends have seen their teacher write two-column proofs in which the reasons justifying a statement are written next to the statement being made. Travis decides to turb his argument into a two-column proof, as follows. | Statements | Reasons | |---|--| | ΔABC is equilateral | Given | | \overrightarrow{CE} is a line of reflection | Equilateral triangles can be folded onto themselves about a line of reflection | | D is the midpoint of \overline{AB} | Definition of reflection | | \overline{CD} is a median | Definition of median | 9. Write each of Clarita's, Tehani's, and Carlos' arguments in two-column proof format. | Statements | Reasons | |--|--| | | Reasons | | ΔABC is equilateral | Given | | \overrightarrow{CE} is a line of reflection | Equilateral triangles can be folded onto | | | themselves about a line of reflection | | CD \(\perp AB\) | Definition of reflection | | ∠CDA and ∠CDB are right angles | Definition of perpendicular | | $\overline{AD} \cong \overline{BD}$ | Definition of reflection | | $\overline{CD} \cong \overline{CD}$ | Reflexive property of congruence | | $\Delta ACD \cong \Delta BCB$ | SAS | | ∠ACD ≅ ∠BCB | Corresponding parts of congruent triangles | | and the state of t | are congruent | | CD is an angle bisector | Definition of angle bisector | | Statements | Reasons | |---|--| | ΔABC is equilateral | Given | | \overrightarrow{CE} is a line of reflection | Equilateral triangles can be folded onto themselves about a line of reflection | | CD \(\perp AB\) | Definition of reflection | | $\overline{AD}\cong \overline{BD}$ | Definition of reflection | | \overline{CD} is a perpendicular bisector | Definition of perpendicular bisector | SECONDARY MATH II // MODULE 5 GEOMETRIC FIGURES - 5.3 5.3 READY, SET, GO! Name Period 6 Date #### READY Topic: Congruence statements and corresponding parts Remember that when you write a congruence statement such as $\triangle ABC \cong \triangle FGH$, the corresponding parts of the two triangles must be the parts that are congruent. For instance, $\angle A \cong \angle F$, $AB \cong FG$, $\angle B \cong \angle G$, $BC \cong GH$. Also, recall that the congruence patterns for triangles, ASA. SAS, and SSS, are what we can use to justify triangle congruence. The segments and angles in each problem below are corresponding parts of 2 congruent triangles. Make a sketch of the two triangles. Then write a congruence statement for each pair of triangles represented. State the congruence pattern that justifies your statement. Congruence statement Congruence pattern 1. $ML \cong ZI$, $LR \cong JB$, $\angle L \cong \angle J$ SAS - 2. $WB \cong QR, BP \cong RS, WP \cong QS$ - a. b. - 3. $\overline{CY} \cong \overline{RP}, \overline{EY} \cong \overline{BP}, \angle Y \cong \angle P$ - a. b. - 4. $\overline{BC} \cong \overline{JK}, \overline{BA} \cong \overline{JM}, \angle B \cong \angle J$ - a. b. - 5. $\overline{DF} \cong \overline{XZ}, \overline{FY} \cong \overline{ZW}, \angle F \cong \angle Z$ - a. b. - 6. $\overline{WX} \cong \overline{AB}, \overline{XZ} \cong \overline{BC}, \overline{WZ} \cong \overline{AC}$ - a. b. Topic: Special triangle segments and proof. Recall the following definitions: ### In a triangle: an altitude is a line segment drawn from a vertex perpendicular to the opposite side (or an extension of the opposite side). a median is a line segment drawn from a vertex to the midpoint of the opposite side. an angle bisector is a line segment or ray drawn from a vertex that cuts the angle in half. a perpendicular bisector of a side is a line drawn perpendicular to a side of the triangle through its midpoint. Be sure to use the correct notation for a segment in the following problems. 7. Name a segment in ΔGHM that is an altitude. 8. Name a segment in ΔGHM that is an angle bisector. 9. Name a segment in ΔGHM that is NOT an altitude. 10. Create a perpendicular bisector by marking two segments congruent in ΔGHM . Name the segment that is now the perpendicular bisector. ## Use $\triangle DEF$ in problems 11 - 13. - 11. Construct the altitude from vertex D to \overrightarrow{EF} . 12. Construct the modifier of - 12. Construct the median from D to $\overline{\it EF}$. - 13. Construct the perpendicular bisector of $\overline{\textit{EF}}$. Tehani has been studying the figure below. She knows that quadrilateral ADEG is a rectangle and that ED bisects \overline{BC} . She is wondering if with that information she can prove $\Delta BGE \cong \Delta EDC$. She starts to organize her thinking by writing what she knows and the reasons she knows it. **I know** \overline{ED} bisects \overline{BC} because I was given that information **I know** that $\overline{BE} \cong \overline{EC}$ by definition of bisect. I know that GE must be parallel to AD because the opposite sides in a rectangle are parallel. I know that $\overline{GA} \parallel \overline{ED}$ because they are opposite sides in a rectangle. **I know** that \overline{AD} is contained in \overline{AC} so \overline{AC} is also parallel to \overline{GE} . I know that \overline{GA} is contained in \overline{BA} so \overline{GA} is also parallel to \overline{BA} **I know** that \overline{BC} has the same slope everywhere because it is a line. I know that I now have an angle, a side, and an angle congruent to a corresponding angle, side, and angle. So $\Delta BGE \cong \Delta EDC$ by ASA. 14. Use Tehani's "I know" statements and her reasons to write a two-column proof that proves $\Delta BGE \cong \Delta EDC$. Begin your proof with the "givens" and what you are trying to prove. **Given:** quadrilateral ADEG is a rectangle, \overline{ED} bisects \overline{AC} Prove: $\triangle BGE \cong \triangle EDC$ | STATEMENTS | REASONS | |--|---------| | 1. quadrilateral ADEG is a rectangle | given | | 2. \overline{ED} bisects \overline{AC} | given | GO Topic: Transformations # Start 5.3 "go" Perform the following transformations on $\triangle ABC$. Use a straight edge to connect the corresponding points with a line segment. Answer the questions. - 15. Reflect $\triangle ABC$ over \overrightarrow{LK} . Label your new image $\triangle A'B'C'$. - 16. What do you notice about the line segments $\overline{AA'}$, $\overline{BB'}$, and $\overline{CC'}$? - 17. Compare line segments \overline{AB} , \overline{BC} , and \overline{CA} to $\overline{A'B'}$, $\overline{B'C'}$, $\overline{C'A'}$. What is the same and what is different about these segments? - 18. Translate $\triangle ABC$ down 8 units and right 10 units. Label your new image $\triangle A"B"C"$. - 19. What do you notice about the line segments \overline{AA} , \overline{BB} , and \overline{CC} ? - 20. Compare line segments \overline{AB} , \overline{BC} , and \overline{CA} to $\overline{A"B"}$, $\overline{B"C"}$, $\overline{C"A"}$. What is the same and what is different about these segments? - 21. Translate $\triangle ABC$ down 10 units and reflect it over the Y-axis. Label your new image $\triangle A'''B'''C'''$. - 22. What do you notice about the line segments $\overline{AA'''}$, $\overline{BB'''}$, and $\overline{CC'''}$? - 23. Compare line segments \overline{AB} , \overline{BC} , and \overline{CA} to $\overline{A'''B'''}$, $\overline{B'''C'''}$, $\overline{C'''A'''}$. What is the same and what is different about these segments?