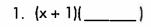
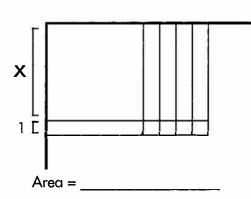
Algebra 7	Tiles	Factoring	Worksheet	1.1
-----------	-------	------------------	-----------	-----

Name ______ Period_____

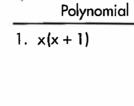
Using your Algebra Tiles $^{\text{\tiny{TM}}}$ and the model, find the missing dimension (length or width) of each rectangle.


Let


represent x^2 , represent x, and represent 1.

Dimensions

Area



А	re	a	=

Multiplying Polynomials Worksheet 2

Name

Multiply the polynomials listed below. Use your Algebra Tiles $^{\rm IM}$ and Product Mat to create models. Draw a model for each problem.

Model

2.
$$(x + 1)(x + 3)$$

Area =

3.
$$(x + 2)(x + 2)$$

Area = ______

Dividing Trinomials Worksheet 1

Name _____

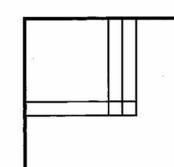
Use the model and your Algebra Tiles™ to determine each rectangle's length and width.

Let

represent x^2 , represent x, and represent 1.

1. (_____)(_____)

Dimensions


Area =

2. (_____)(_____)

Area = _____

3. (____)(____)

Area = ______

Multiplying Polynomials Extra Practice

2.
$$(x + 1)(x + 5)$$

3.
$$(x + 2)(x + 4)$$

4.
$$x(2x + 5)$$

5.
$$(x + 1)(2x + 2)$$

6.
$$(2x + 3)(x + 2)$$

8.
$$(2x + 2)(x + 1)$$

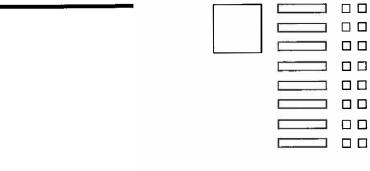
9.
$$(x + 3)(3x + 4)$$

10.
$$(2x + 5)(x + 2)$$

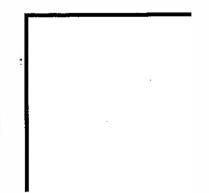
Dividing Trinomials Worksheet 3

Name ___

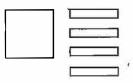
Using your Algebra Tiles™ and Product Mat, determine the length, width, and area of the rectangles

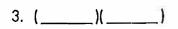


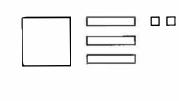
represent x^2 , represent x, and \Box represent 1.


		ווט	Dillienzionz			
1.	(_)()		

formed by the tile groupings below.


Area




2. (_____)(_____)

Area =

Area =

Dividing Trinomials: Extra Practice

Name _____

Use your Algebra Tiles[™] to <u>draw</u> tile models to find the missing dimension (length or width) of the rectangle to divide these trinomials.

1.
$$(x^2 + 4x) \div (x + 4) =$$

2.
$$(x^2 + 6x + 5) \div (x + 1) =$$

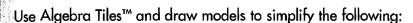
3.
$$(x^2 + 6x + 8) \div (x + 2) =$$

4.
$$(2x^2 + 5x) \div x =$$

5.
$$(2x^2 + 4x + 2) \div (2x + 2) =$$

6.
$$(2x^2 + 7x + 6) \div (x + 2) =$$

7.
$$(3x^2 + 4x + 1) \div (x + 1) =$$


8.
$$(2x^2 + 4x + 2) \div (2x + 2) =$$

9.
$$(3x^2 + 13x + 12) \div (x + 3) =$$

10.
$$(2x^2 + 9x + 10) \div (x + 2) =$$

Adding & Subtracting Polynomials Extra Practice

Name _____

Let

represent x^2 , represent x, and x represent 1.

1.
$$5x^2 + 2x + 1$$

+ $(x^2 - x + 4)$

2.
$$5x^2 + 2x - 1$$

- $(x^2 - x + 4)$

3.
$$6x^2 - 3x - 1$$

+ $(x^2 + 2x + 1)$

4.
$$6x^2 - 3x - 1$$

- $(-x^2 - 2x - 1)$

5.
$$2x^2 + 2x + 2$$

+ $(-x^2 + 3x - 4)$

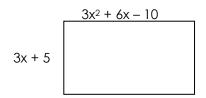
6.
$$2x^2 + 2x + 2$$

- $(-x^2 + 3x - 4)$

7.
$$x^2 - x - 3 + (3x^2 + 2x - 6)$$

8.
$$x^2 - x - 3$$

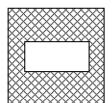
 $-(-3x^2 + 2x - 6)$



Finding Perimeter and Area Using Polynomials

1. What is the distance around the rectangle if the length is $3x^2 + 6x - 10$ and the width is


$$3x + 5?$$


2. If the perimeter of the pentagon below is $7x^4 + 9x^3 - 6x^2 + 10$, what is the length of the missing side?

3. If the perimeter of the **square** below is $12x^5 - 8x^2 + 20x - 4$, what is the length of one side?

4. The area of the square below is represented by the expression $4x^2 + 4x + 1$. The area of the rectangle is represented by the expression $x^2 - 5x + 6$. Using the diagram below, find the area of the shaded region.

