Thanks for downloading this product from Time Flies!

I hope you enjoy using this product.
Follow me at my TpT store!
My Store:
https://www.teacherspayteachers.com/Store/Time-Flies
©2018 Time Flies. All rights reserved by author. This product is to be used by the original downloader only. Copying for more than one teacher, classroom or school system is prohibited.

About this product:

ACT Prep /// has 30 questions covering geometry and trig. Included in this packet: Perimeter, Area, Volume, Dimensional Changes, Geometric Properties, Trig, Pythagorean Theorem, Laws of Cosines and Sines and more.

1. The length of a rectangle is 8.3 cm and the width is 4.5 cm . Find the area and perimeter of the rectangle. (Draw the picture)
2. If the length and width are both doubled in problem \#1, will the area and the perimeter double? Explain.
3. Find the area of a circle with a radius of 5.5 inches. (Draw the picture)
4. What is the diameter of the circle in \#3? \qquad
5. Find the area of the sector if the central angle is 48° and radius is 3.25 inches. Round to the nearest $100^{\text {th }}$.

6. Jimmy wanted to create a circle graph of the amount of time his group studied? What mistakes did he make? Redraw this circle and make it more accurate.

8 hours of
study time.

4 hours of
study time. 1 hour
of study of study
7. Using the new circle from problem 6, what should be the degree of the central angle represented by 8 hours of study time?
8. Find x : \qquad

9. Write an equation to find x in terms of y.

10. Trapezoid TRAP is shown. TR || PA.

If $\angle P$ is 55° then what is the $m \angle T$? \qquad

11. In TRAP above, $T R=12 \mathrm{ft}$ and $\mathrm{PA}=14 \mathrm{ft}$. If the area of the trapezoid is 104 ft^{2}, then what is the height of the trapezoid? (show work below)
12. Find the area of the regular hexagon rounded to the nearest hundredth if each side is 10 units.

13. Find all the missing angles in the figure:
$\angle C=$ \qquad $\angle \mathrm{D}=$ \qquad $\angle A=$ \qquad $\angle C Y D=$ \qquad

14. If $l \| m$, use the information given to find all the angles.
1: \qquad 2: \qquad 3: \qquad 4: \qquad
5: \qquad 6: \qquad 7: \qquad

-

15. Fill in the blank with an expression in terms of x.
$\angle 6=$ \qquad
$\angle 5=$ \qquad
$\angle 2=$ \qquad
$\angle 4=$ \qquad

16. The sum of the measures of the angles of a triangle $=$ \qquad .
17. Which of the following could not be side lengths of a triangle?
a) $2,3,4$
b) $3,4,5$
c) $4,5,9$
d) $4,4,5$
18. In a triangle, the largest side is opposite the largest \qquad and the smallest \qquad is opposite the smallest angle.
19. When should the Pythagorean Theorem be used?
20. In a right triangle, the side opposite a 35 degree angle has a length of 10 yards. Find all missing sides and angles. Draw the picture.
21. A right isosceles triangle has a hypotenuse that $=6 \sqrt{2}$. Find the area and perimeter. (Draw picture)
22. Find the area of the shaded region if a circle with a radius of 4 cm is inscribed in a square. Leave answers in terms of π.

23. Find the volume of a cylinder with the dimensions shown in the diagram. Round to the nearest $100^{\text {th }}$.
24. Find the area of isosceles trapezoid TARP if:

TO is the height, leg TP $=8$ units, base TA $=11$ units, $\angle P=65^{\circ}$ (show work)

25. What factor does the area need to be multiplied by in problem \#24, if all the dimensions are cut in half?

26. Write the formula for the Law of Sines: \qquad
27. Write the formula for the Law of Cosines: \qquad
Find all the missing sides and angles. (Round to the nearest $100^{\text {th }}$ when necessary.)

30.

Answer Keys

The answers are in red and the explanations are in blue.

1. The length of a rectangle is 8.3 cm and the width is 4.5 cm . Find the area and perimeter of the rectangle. (Draw the picture) area $=37.35 \mathrm{~cm}^{2}$ perimeter $=25.6 \mathrm{~cm}$ Perimeter $=2 \mathrm{l}+2 \mathrm{w}$ or $2(8.3)+2(4.5)=25.6 \mathrm{~cm}$

8.3

2. If the length and width are both doubled in problem \#1, will the area and the perimeter double? Explain. The perimeter will, but the area will quadruple. The area will (double) ${ }^{2}$.
Perimeter: 16.6 and 9 are the new dimensions, $2(16.6)+2(9)=51.2$ which is twice as big as 25.6 from problem \#1. Since area is a multiplication process, then when two sides are doubled, it is the same thing as multiplying by 2 times 2 or 4 , so the new area will quadruple. $A=(16.6)(9)=149.4$ which is 4 times bigger than 37.35 from problem \#1.
3. Find the area of a circle with a radius of 5.5 inches. (Draw the picture)

$$
\begin{gathered}
30.25 \pi \text { or } 95.03 \mathrm{in}^{2} \\
\mathrm{~A}=\pi \mathrm{r}^{2}=\pi(5.5)^{2}=30.25 \pi \text { or } 95.03 \mathrm{in}^{2} \\
\text { This answer is called leaving it in terms of pi. }
\end{gathered}
$$

4. What is the diameter of the circle in \#3? 11 inches

The diameter is twice as big as the radius.
5. Find the area of the sector if the central angle is 48° and radius is 3.25 inches. Round to the nearest $100^{\text {th }}$.

$$
\begin{array}{cl}
\left(\frac{48}{360}\right)\left(\pi 3.25^{2}\right) \approx 4.42 \mathrm{in}^{2} & \begin{array}{l}
\text { A sector is like a slice of pizza. The formula is } \\
\text { central angle divided by } 360 \text { times the area of } \\
\text { the circle or }
\end{array} \\
& \frac{m}{360} \times \pi r^{2}
\end{array} \text { ©2018 Time Flies }
$$

7. Using the new circle from problem 6, what should be the degree of the central angle represented by 8 hours of study time? 160°
$\frac{8}{18} \times 360^{\circ}=160^{\circ}$ (8 hours out of a total of 18 hours times the total degrees in a circle.)
8. Find x : \qquad

A straight line is 180°, so $180-106=74$.
9. Write an equation to find x in terms of y.

$$
x=180-y
$$

A straight line is 180°, so x has to be whatever y is
subtracted from 180.
10. Trapezoid TRAP is shown. TR || PA. If $\angle \mathrm{P}$ is 55° then what is the $\mathrm{m} \angle \mathrm{T}$? 125°

Same side interior angle theorem - When two lines are parallel and cut by a transversal, the same side interior angles are supplementary.

11. In TRAP above, $T R=12 \mathrm{ft}$ and $\mathrm{PA}=14 \mathrm{ft}$. If the area of the trapezoid is $104 \mathrm{ft}^{2}$, then what is the height of the trapezoid? (show work below) height $=8$ feet

$$
.5 h(12+14)=104 \quad \text { Formula for the Area of a Trapezoid: } A=1 / 2 h\left(b_{1}+b_{2}\right)
$$

$$
\begin{aligned}
13 \mathrm{~h} & =104 \\
\mathrm{~h} & =8 \mathrm{ft}
\end{aligned}
$$

12. Find the area of the regular hexagon rounded to the nearest hundredth if each side is 10 units. 346.41 square units

$$
\begin{aligned}
& A=1 / 2 \mathrm{~Pa} \text { (formula for area } \\
& \text { of regular polygons. } \\
& A=1 / 2(80)(5 \sqrt{3}) \\
& A=200 \sqrt{3} \approx 346.41
\end{aligned}
$$

13. Find all the missing angles in the figure:
$\angle C=58^{\circ} \angle D=58^{\circ} \angle A=58^{\circ} \angle C Y D=64^{\circ}$
The triangles are congruent by SAS, so corresponding parts are congruent.

14. If $l \| m$, use the information given to find all the angles.
1: $95^{\circ} 2: 85^{\circ}$
3: 85°
4: 95°
5: 95°
6: 85°
7: 95°

15. Fill in the blank with an expression in terms of x.
$\angle 6=180-x$
$\angle 5=x$
$\angle 2=180-x$
$\angle 4=x$

You must know:

1) Vertical angles are congruent.
2) Same side interiors are supplementary.
3) Corresponding angles are congruent.
4) Alternate interior angles are congruent.
16. The sum of the measures of the angles of a triangle $=\underline{180}$ degrees.
17. Which of the following could not be side lengths of a triangle?
a) $2,3,4$
b) $3,4,5$
c) $4,5,9$
d) $4,4,5$

The sum of any two sides must be greater than the third side.
18. In a triangle, the largest side is opposite the largest angle and the smallest side is opposite the smallest angle.
19. When should the Pythagorean Theorem be used? When two sides of a right triangle are known.
20. In a right triangle, the side opposite a 35 degree angle has a length of 10 yards. Find all missing sides and angles. Draw the picture. missing angle: 55° hypotenuse $=17.43$ (or 17.44 depending on the method and rounding used) and missing leg $=14.28$

$$
(17.43)^{2}-(10)^{2}=y^{2}
$$

$$
y=14.28
$$

21. A right isosceles triangle has a hypotenuse tnat $=0 \sqrt{2}$. Find the area and perimeter. (Draw picture) perimeter: $12+6 \sqrt{2}=20.49$ area: 18

A right isosceles is a 45-45-90, so the legs are the same. The
hypotenuse is $\sqrt{2}$ times bigger, so the legs are 6 each.
22. Find the area of the shaded region if a circle with a radius of 4 cm is inscribed in a square. Leave answers in terms of π. $64-16 \pi\left(\approx 13.73 \mathrm{~cm}^{2}\right)$
If the radius is 4 , then a side length of the square is 8 . Use area of square - area of circle.

23. Find the volume of a cylinder with the dimensions shown in the diagram. Round to the nearest $100^{\text {th }}$.

$$
93.27 \mathrm{in}^{3} \quad \mathrm{~V}=\mathrm{Bh} \mathrm{~V}=\pi(2.5)^{2}(4.75) \approx 93.266032
$$

24. Find the area of isosceles trapezoid TARP if:

TO is the height, leg TP = 8 units, base TA $=11$ units, $\angle \mathrm{P}=65^{\circ}$
(show work) $\quad \mathrm{A}=1 / 2(7.25)(11+17.76) \quad \sin (65)=\frac{x}{8} \quad \cos (65)=\frac{y}{8}$
104.26 units $^{2} \quad x=8 \sin (65) \quad x=8 \cos (65)$
(Use trig to find measures in triangle TOP.) $x \approx 7.25 \quad x \approx 3.38$
25. What factor does the area need to be multiplied by in problem \#24, if all the dimensions are cut in half?
$1 / 4$ Take what is happening to all the dimensions and square it, so $(1 / 2)^{2}$.

26. Write the formula for the Law of Sines: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
27. Write the formula for the Law of Cosines: $a^{2}=b^{2}+c^{2}-2(b)(c) \operatorname{Cos}(A)$

Find all the missing sides and angles. (Round to the nearest $100^{\text {th }}$ when necessary.)

30.

Find x : $\underline{\underline{1.51}}$

Use Law of Sines Now.
First find all of the angles:
$180-125=55^{\circ}$
$90-55=35^{\circ}$
$y \sin (41)=5 \sin (14)$
$180-125-14=41^{\circ}$

$$
\begin{aligned}
& y=\frac{5 \sin (14)}{\sin (41)} \\
& y \approx 1.84
\end{aligned}
$$

Now set up a right triangle trig problem:

$$
\begin{aligned}
& \sin (55)=\frac{x}{1.84} \\
& x=1.84 \sin (55) \\
& x \approx 1.51
\end{aligned}
$$

Reporting categories for this lesson:

```
PHM = Preparing for Higher Math (Geometry is under this heading)
\[
\mathrm{G}=\mathrm{Geometry} \text { (and trig) }
\]
IES = Integrating Essential Skills
MDL = Modeling (each modeling item is also a part of another category)
```

Name: \qquad Answer Document - ACT Prep \#3

1.	$\begin{aligned} & \text { area }=37.35 \mathrm{~cm}^{2} \\ & \text { perimeter }=25.6 \mathrm{~cm} \end{aligned}$	G
2.	See the other answer key	G
3.	30.25π or $95.03 \mathrm{in}^{2}$	G
4.	11 inches	G
5.	$4.42 \mathrm{in}^{2}$	G
6.	See the other answer key	$\begin{aligned} & \text { IES } \\ & \text { MDL } \end{aligned}$
7.	160°	G
8.	74°	G
9.	$x=180-y$	G
10.	125°	G

11.	8 feet	\mathbf{G}
12.	346.41 square units	\mathbf{G}
13.	$\angle C=58^{\circ} \angle D=58^{\circ}$ $\angle A=58^{\circ} \angle C Y D=64^{\circ}$	\mathbf{G}
14.	$1: 95^{\circ} 2: 85^{\circ} 3: 85^{\circ} 4: 95^{\circ}$ $5: 95^{\circ} 6: 85^{\circ} 7: 95^{\circ}$	\mathbf{G}
15.	$\angle 6=180-x \angle 5=x$ $\angle 2=180-x \angle 4=x$	\mathbf{G}
16.	180 degrees 17	\mathbf{G}
17.	C	\mathbf{G}
18.	angle, side	\mathbf{G}
19.	When two sides of a right triangle are known.	\mathbf{G}
20.	Angle: 55 Hyp: 17.43 Side: 14.28	\mathbf{G}

21.	per: $12+6 \sqrt{2}=20.49$ area: 18	G
22.	$64-16 \pi$	G
23.	$93.27 \mathrm{in}^{3}$	\mathbf{G}
24.	104.26 units 2	\mathbf{G}
25.	$1 / 4$	\mathbf{G}
26.	$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$	\mathbf{G}
27.	$a^{2}=b^{2}+c^{2}-2(b)(c) \cos (\mathrm{A})$	\mathbf{G}
28.	See the other answer key	\mathbf{G}
29.	See the other answer key	\mathbf{G}
30.	1.51	\mathbf{G}

Name:
Answer Document - ACT Prep \#3

1.		G
2.		G
3.		G
4.		G
5.		G
6.		GES
7.		G
8.		G
9.		G
10.		

11.		\mathbf{G}
12.		\mathbf{G}
13.		\mathbf{G}
14.		\mathbf{G}
15.		\mathbf{G}
16.		\mathbf{G}
17.		\mathbf{G}
18.		\mathbf{G}
19.		
20.		

21.		G
22.		G
23.		G
24.		G
25.		G
26.		G
27.		G
28.		G
29.		
30.		

